热门TAG
热门期刊
您的位置: 论文范文 >
论文范文

胡麻茎秆特性与抗倒伏关系的研究进展

 2023-04-28 08:28:53  来源:易择期刊 

摘    要:在作物生长发育过程中,倒伏是很常见的一种现象。发生倒伏的作物收获困难,经济效益也大幅度降低。从表型和基因型角度阐明作物抗倒伏机理并将其应用于生产,是作物抗倒伏研究的重中之重。胡麻倒伏主要与茎秆特性有关,而茎秆的机械强度由形态特征和化学成分决定。本文对胡麻茎秆形态性状和化学成分和抗倒伏性的关系进行了阐述,并且也对其遗传机理进行综述,以期为培育抗倒伏胡麻品种提供一定理论基础。


关键词:胡麻;茎秆特性;倒伏;


Research Progress on Relationship between Stem Characteristics and Lodging Resistance

of Flax

Li Jiana Wang Shuyan Yi Liuxi Li Zhiwei Shi Fengyuan

Zhang Jinhao

College of Agricuture, Inner Mongolia Agricutural University


Abstract:Lodging is a common phenomenon during crop growth and development. Lodging crops are difficult to harvest and the economic benefits are greatly reduced. Clarifying the mechanism of crop lodging resistance from the perspective of phenotype and genotype and applying it to production are the top priorities of crop lodging resistance research. The lodging of flax is mainly related to stem characteristics, and the mechanical strength of stem is determined by morphological characteristics and chemical composition. In this paper, the relationship between morphological traits, chemical components and lodging resistance of flax stems was expounded. The genetic mechanism was also reviewed in order to provide a theoretical basis for breeding lodging resistant flax varieties.


Keyword:Flax; Stem characteristics; Lodging;


胡麻是我国重要的油料和经济作物(孟桂元等, 2012),其营养成分高且用途广泛。胡麻籽丰富的活性物质以及优质的纤维品质使得亚麻越来越受青睐;而耐瘠、耐旱等生物特性使其具有调整区域种植结构的作用,因此胡麻的经济效益逐渐增大,在我国的种植面积也大幅度提高。目前,在胡麻产业发展过程中,植株后期倒伏、白粉病危害、籽粒产量低等问题严重制约着胡麻产业的进一步发展(郭芳等, 2016)。在诸多影响作物产量的因素中,倒伏对产量影响极大,优异的抗倒伏性是作物获得高产稳产的重要保证,因此研究胡麻品种的抗倒伏性显得尤为重要。胡麻茎秆中包含着运输水分及养分的输导系统,在其生长发育过程中,因受到风、雨、病虫害等环境因素及自身遗传特征的影响后,容易发生茎秆倒伏、弯曲和折断(杨东贵和陆万芳, 2012),茎秆倒伏会影响胡麻茎秆及根部的物质运输,导致植株营养生长和生殖生长受阻,影响胡麻干物质积累,从而导致胡麻严重减产、茎秆纤维物质及籽实品质下降等问题。因此,如若想在生产实践中发挥出胡麻的最大经济效益,那么对抗倒伏胡麻品种的选育非常重要。


根据作物的倒伏发生部位可将倒伏情况分为根倒伏和茎倒伏,其分别与根系锚固能力和茎秆机械强度相关(朱新开等, 2006)。胡麻在田间茎倒伏发生面积更广,造成产量的损失更严重(姜慧等, 2021),因此对胡麻茎秆特性的研究显得更为重要。


1胡麻茎秆特性

1.1茎秆形态性状

胡麻茎秆的表型性状和生化成分都与抗倒伏有必然联系。茎秆是养分和水分的运输通道,并且是各个器官的支撑载体,尤其是在生育后期,随着物质积累的增加和向上转运,会造成茎秆机械强度下降,茎秆支撑作用减弱(Manga-Robles et al., 2021),最终导致胡麻茎秆从直立状态到倒伏状态。


胡麻茎秆作为植株重量的物理支撑部位,胡麻茎秆的粗细、高度、重心位置、抗折力直接关系到胡麻的茎秆强度优劣。


茎直径和壁厚度决定茎秆断裂强度,茎直径越大,壁厚越厚,倒伏率越低,在对茎粗和壁厚对抗倒伏力影响的研究中,有相关研究提出,随着茎秆直径的增加,茎秆木质部的弯曲刚度增加,茎秆的稳定性增加,抗倒伏性增强(陈双恩和杜汉强, 2010; 王耀等, 2018; 马青美等, 2019; 苏亚蕊等, 2021)。然而也有学者认为(Tian et al., 2017),根据植物对营养物质的分配原则来看,如果增大茎秆壁厚,会使茎秆与果球产生竞争关系,从而导致在整体生物量升高的情况下,单株籽粒产量不增甚至下降,无法实现高产稳产的育种目标。因此该问题还需进行深入研究。


株高也是影响胡麻茎秆倒伏的重要因素。一般而言,当株高过高时,茎秆支持力小于重力,茎秆无法恢复到原本的直立状态(田保明等, 2005; Joudi and Ende, 2018),从而发生茎倒伏。不少研究者发现株高在一定范围内与抗倒伏性呈负相关关系(于润清, 2012; 于海飞等, 2022),将植株过度矮化会使植株冠层结构受到影响,进而影响植株的光合作用(吴瑞香和杨建春, 2011; Goudenhooft et al., 2019),而光合作用的减弱会使胡麻产量降低。因此通过降低株高来提高植株的抗倒伏能力具有一定的可行性,但控制株高也需要考虑是否降低了作物产量。


1.2茎秆解剖结构

从解剖学角度来看,茎秆横向生长发育由外向内分别形成表皮、厚壁组织、维管束、薄壁组织和髓腔(梁国玲等, 2019)。在亚麻茎秆中,中部和下部的纤维细胞显示出明显增厚的细胞壁(潘志远, 2021)。含有厚且坚硬细胞壁的茎秆细胞,具有更强的抗倒伏能力,能够较大程度的抵御压力。细胞壁由纤维素纤维组成,这些纤维素纤维中填充了一层或多层半纤维素(Longin and Würschum, 2014)、木质素或果胶(Hirano et al., 2014),纤维素纤维的层数、体积分数和方向各不相同的多孔结构排列特性对抗倒伏很重要,可为植物提供抵抗局部弯曲的能力(Yuan et al., 2021),而较高的茎秆抗折力保证了植株的稳定性,从而使植株具有更高的抗倒伏能力。Bourmaud等(2015)分析了影响茎秆刚度的各种参数,发现纤维束在茎秆占比越大,茎秆越粗,植株的稳定性越好。此外,作物茎秆重要的组成部分为维管束,由韧皮部和木质部组成(Goudenhooft et al., 2019),解剖学特性与抗倒伏性之间的关系可部分归因于木质化对茎秆强度影响。


1.3茎秆主要的化学成分

作物茎秆中贮藏物的含量及组成成分决定了胡麻茎秆的机械强度,其中纤维素和木质素是构成植物细胞壁的重要成分,这些物质通过各种化学键连接组成了复杂的网络交联结构,从而形成具有一定刚性和韧性的细胞壁(李坤, 2017)。纤维素形成了细胞壁的纤维骨架,使细胞壁具有一定的弹性和硬度,在宏观上对增强茎秆的韧度和弯曲能力起关键作用(胡振, 2015)。而木质素填充于纤维素构成的骨架之中以增强茎秆的硬度和支撑强度(卢昆丽, 2014)。因此,纤维素和木质素这些化学成分的含量及其构成比例对作物茎秆的物理性质如茎秆抗折力和茎秆强度等有直接影响,从而影响作物的抗倒伏能力(Li et al., 2019)。目前围绕茎秆化学成分与机械强度关系的研究有很多,结论也多种多样。Gibaud等(2015)分别对抗倒品种和不抗倒品种的纤维含量进行了对比研究,发现高抗品种的纤维含量更高而且纤维刚性更强;而且纤维含量越高,因此,具有高抗倒性的品种成为油、纤两用亚麻资源的潜力更大(谢冬微和孙健, 2020)。Bourmaud等(2015)将茎秆刚度和纤维的杨氏模量联系起来进行分析,发现纤维在植株倒伏行为中能起关键作用。木质素可以增强植物次生细胞壁的机械强度,因此被认为会影响植株抗倒伏性(Ignat et al., 2011)。相关研究发现,提高胡麻茎秆木质素相关酶活性,可以使茎秆木质素积累和抗倒伏指数提升(Chantreau et al., 2014; Mierziak et al., 2014; Roy et al., 2017)。木质素和纤维素对茎秆机械支撑起主要作用,而其他一些大分子物质也能起到一定辅助作用。亚麻茎秆中合成多羟基酸具有改善植物机械性能的可能性,聚羟基脂肪酸酯(mcl-PHA)引起亚麻植株中脂肪酸含量的显著变化(Wróbel-Kwiatkowska et al., 2019),而编码PHA合成酶基因过度表达的将亚麻植株的机械性能提高了两倍多。还有一些类似于阿拉伯半乳聚糖蛋白质(AGPs)、富含甘氨酸的蛋白质(GRPs)以及富含亮氨酸的蛋白质(LRPs)型结构域(Girault et al., 2000)。被鉴定出可能在细胞分化或纤维次生壁的机械性能中发挥特定功能;而内转葡糖基酶、水解酶这些酶类蛋白在亚麻纤维形成和细胞壁重塑过程中可能起着核心作用(Diederichsen and Ulrich, 2009)。近几年的研究发现,提升胡麻茎秆碳水化合物各组分的含量,尤其是非结构性碳水化合物的含量(刘亚辉等, 2022),可以显著提升胡麻抗折力与抗倒伏指数。从以上这些茎秆化学成分含量着手研究,提高胡麻茎秆机械性能,能有效增强胡麻抗倒伏能力。


表1 胡麻茎秆特性与抗倒伏的关系 

Table 1 Relationship between flax stalk characteristics and lodging resistance


2茎秆发育的分子机制

2.1分子标记辅助育种

基因控制着植物各个生育时期的生长状态,也决定着植物本身的生物特性。基因可以从本质上说明与抗倒伏之间的关系,而表型性状与生理性状等的描述是通过植株直观的生长表现来判断与倒伏之间的关系,并不能挖掘到关于基因这一层次。分子标记辅助育种技术是培育胡麻优良种质的重要方法之一,其通过将现代分子生物学与传统遗传育种相结合,借助DNA分子标记对种质资源或其他育种材料进行选择,即通过对与目标性状连锁的单个或多个基因进行检测、定位和跟踪(钱润等, 2020),检测种质资源中是否有不良性状基因的连锁,降低种质选择的盲目性(康庆华等, 2006),从而对作物产量、品质和抗性等综合性状的高效改良,提高育种效率(冯学金和杨建春, 2015)。目前,数量性状的分子标记辅助选择技术已被广泛运用到多种作物性状分子机理研究中,已有大量与株高(Zhao et al., 2021)、壁厚(Xiang et al., 2019)、茎秆抗折力(Kato et al., 2021)、木质素含量(Galinousky et al., 2014)、纤维素含量(Wang et al., 2006)等性状相关的数量性状基因座被发掘,其中对重要区间的详细定位发现了大量抗倒伏相关的基因,其中一些基因类型、功能以及作用机理已被阐明(赵小红等, 2021),这些基因的挖掘为作物抗倒伏分子育种提供了一定的理论基础。


2.2茎秆表型性状的研究进展

株高、茎粗、茎秆抗推力是影响胡麻抗倒伏能力的重要因素,通过对控制这些性状的基因进行定位,可为作物抗倒伏分子育种提供重要的基因资源。绿色革命以来,育种家们发现引入矮秆基因,可控制茎秆稳定性,从而提高作物产量。株高、茎粗、茎秆抗推力典型的数量性状,受多个基因控制,国内外众多学者利用不同的遗传群体对这些性状进行了定位。杨晓军等(2008)利用150个共显性SSR标记构建了Ye478与Dan340杂交玉米杂交种的分子连锁图谱。采用复合区间映射法对5种环境下的玉米株高(PH)进行QTL定位;共鉴定出21个与株高相关的QTL位点,分别定位于1号和5号染色体上。而Zhao等(2021)鉴定出6个与小麦株高相关的QTL位点,定位于2A、3D和4D染色体上,而小麦半矮化基因Rht-B1、Rht-D1和Rht13 (Cui et al., 2011)的3个QTL位点分别定位于4B、4D和7B染色体短臂上,可以通过将植株适度矮化来提高作物的抗倒伏能力,因此该类基因的成为定位对作物抗倒伏研究具有重要意义。在豌豆中其抗倒伏能力、株高和对枯萎病反应相关的遗传位点也被确定(Tar'an et al., 2003),研究发现在不同环境下,主效QTL比微效QTL更容易被检测到。同样,研究人员也对水稻抗倒伏性状的有利等位基因进行了挖掘,找到与株高(PH)、茎长(SL)、茎粗(SD)、茎秆抗推力(AT/S)和茎秆指数(SI)相关的等位基因数分别为22、24、19、12和28个;并且该研究首次发现了与水稻抗推性相关的特异性QTL RM282-150 bp (Sowadan et al., 2018)。甜高粱中确定了SBI-07和SBI-09上的两个染色体区域(Teingtham, 2015),发现其对株高、茎秆抗折力有重大影响。Zhang等(2018)利用两个胡麻群体进行了株高和工艺长度QTL定位分析;共鉴定出19个株高和工艺长度相关的QTL。在MH群体中,鉴定出8个株高QTL和7个工艺长度QTL,其中5个是两个性状的共同QTL;PH群体共鉴定出6个株高QTL和3个工艺长度QTL。通过比较两个群体的QTL和候选基因信息,发现了2个常见的QTL和3个候选基因,为胡麻株高相关性状的QTL定位克隆和分子标记辅助选择提供了依据。有关控制胡麻株高、茎粗、茎秆抗折力等茎秆性状基因的研究还不够深入,已定位的QTL及候选基因较少,对胡麻抗倒伏遗传机理进行深入表征还较为困难,因此,还需对茎秆表型进行进一步的遗传研究。


2.3茎秆纤维素和木质素含量的研究进展

前文已从茎秆细胞壁结构和茎秆化学成分组成对胡麻抗倒伏能力进行了概述,深入了解其遗传机理对胡麻理想株型适度高秆、茎秆粗壮且耐倒伏的品种培育具有重要意义。结构碳水化合物、纤维素和木质素一般决定植物的抗倒性。纤维素的性质是柔软和有弹性的,具有良好的抗拉强度,而木质素为植物组织提供刚性和机械支持(Campbell and Sederoff, 1996)。因此,茎秆中可溶性糖、纤维素、木质素以及灰分的比例分布对作物倒伏能力有一定影响。在对高粱茎秆化学成分分布比例的研究中发现,各化学成分的一般配合力(GCA)均呈显著负向或正向效应(Zhou et al., 2021)。水稻茎秆可溶性糖的影响与纤维素、半纤维素和木质素的GCA呈极显著负相关。水稻茎秆糖分相关QTL被定位于3号染色体上(Murray et al., 2008),通过选择籽粒和甜高粱的主效QTL可以改变籽粒和茎秆糖产量性状的遗传潜力,可以注重对倒伏作物碳含量的提高,从而提升生产潜力。而在玉米(Wang et al., 2020)和水稻(Zhang et al., 2012)的相关研究中,也得到了类似的结论。有研究表明水稻数量性状位点BSUC11具有两种类型的功能:分别是节间皮质纤维组织增厚和上部茎秆整体纤维素水平增加(Kashiwagi et al., 2016)。而茎秆总纤维素含量的遗传控制是防止由茎秆强度下降导致倒伏的有效策略。因此可以进一步研究BSUC11的详细功能和茎秆强度退化过程中整体纤维素积累的机制。在对诸多作物的木质素含量的研究中,发现在细胞壁中沉积的木质素越多,茎秆强度越大(Galinousky et al., 2014; Zuk et al., 2016; Gao et al., 2018)。与许多其它被子植物相比,亚麻木质素富含木脂基单元(Day et al., 2005),这表明控制单木素甲氧基化的细胞机制可能与以前在其他物种中研究的不同。通过对CCoAOMT下调导致木质素丁香基单元减少,改变细胞木质素化过程,并且次生细胞壁也会呈螺旋状或环状增厚(Day et al., 2009)。细胞壁的加厚会加大作物茎秆强度,对作物抗倒伏性有一定影响。学者们通过对MYB转录因子在亚麻基因组中的识别和特性进行研究,发现在木质素生产能力较高的组织中,MYB062、MYB072、MYB096、MYB141和MYB146基因表达上调。相反,MYB012和MYB113基因表达下调(Tombuloglu, 2019),表明这些基因参与了木质素的生物合成机制。以上不同群体的研究所产生的数量性状位点、基因、调控酶在基因克隆和遗传育种上具有很大的意义。


表2胡麻茎秆性状相关基因 

Table 2 Stalk trait-related genes in flax


3展望

作物的育种目标是高产、稳产、优质,而在作物的生长发育中,倒伏情况常常发生,这阻碍了育种目标的实现,也使作物经济效益降低。因此,对作物抗倒伏相关性状及其分子机制进行研究是很有必要的。作物茎倒伏主要与茎秆特性有关,而茎秆的物理强度由形态性状和化学成分决定。株高、茎粗、茎秆抗折力都与茎秆抗弯能力有关,这些性状是改变茎秆形态的关键目标。化学成分中的非结构碳水化合物、纤维素和木质素一般决定作物的茎秆强度。非结构碳水化合物可增加作物产量,纤维素的性质是柔软和有弹性的,具有良好的抗拉强度,而木质素为植物组织提供刚性和机械支持。对这些物质含量的控制可以提高作物抗倒伏性。而这些性状都是数量性状,并且多个性状可能会相互作用,这对研究人员来说是个很大的挑战。因此,还需通过新型分子生物技术及组学进一步对抗倒伏机制进行研究。


作者贡献

李佳娜是综述的主要撰写人,完成相关文献资料的收集和分析及论文初稿的写作;石丰源、张锦豪参与文献资料的分析、整理;王树彦、伊六喜是项目的构思者及负责人,王树彦、伊六喜、李志伟指导论文写作。全体作者都阅读并同意最终的文本。


致谢

本研究由内蒙古自然科学基金(2020MS03084)和国家自然科学基金(32160448)共同资助。


参考文献

[1] Bourmaud A., Gibaud M., Lefeuvre A., Morvan C., and Baley C., 2015, Influence of the morphology characters of the stem on the lodging resistance of marylin flax, Ind. Crops Prod., 66(1): 27-37.

[2] Campbell M.M., and Sederoff R.R., 1996, Variation in lignin content and composition, Plant Physiol., 110(1): 3-13.

[3] Chantreau M., Portelette A., Dauwe R., Kiyoto S., Crônier D., Morreel K., Arribat S., Neutelings G., Chabi M., Boerjan W., Yoshinaga A., Mesnard F., Grec S., Chabbert B., and Hawkins S., 2014, Ectopic lignification in the flax lignified bast fiber1 mutant stem is associated with tissue-specific modifications in gene expression and cell wall composition, Plant Cell, 26(11): 4462-4482.

[4] Chen S.E., and Du H.Q., 2010, Lodging resistance in flax and the effect of ridge plowing on lodging resistance, Zhongguo Youliao Zuowu Xuebao (Chinese Journal of Oil Crop Sciences), 32(1): 83-88. (陈双恩, 杜汉强, 2010, 亚麻抗倒伏性状分析及培土对亚麻抗倒伏的影响, 中国油料作物学报, 32(1): 83-88.)

[5] Cui F., Li J., Ding A.M., Zhao C.H., Wang L., Wang X.Q., Li S.S., Bao Y.G., Li X.F., Feng D.S., Kong L.R., and Wang H.G., 2011, Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat, Theor. Appl. Genet., 122: 1517-1536.

[6] Day A., Neutelings G., Nolin F., Grec S., Habrant A., Crônier D., Maher B., Rolando C., David H., Chabbert B., and Hawkins S., 2009, Caffeoyl coenzyme A O-methyltransferase down-regulation is associated with modifications in lignin and cell-wall architecture in flax secondary xylem, Plant Physiol. Biochem., 47(1): 9-19.

[7] Day A., Ruel K., Neutelings G., Crônier D., David H., Hawkins S., and Chabbert B., 2005, Lignification in the flax stem: evidence for an unusual lignin in bast fibers, Planta, 222(2): 234-245.

[8] Diederichsen A., and Ulrich A., 2009, Variability in stem fibre content and its association with other characteristics in 1177 flax (Linum usitatissimum L.) genebank accessions, Ind. Crops Prod., 30(1): 33-39.

[9] Feng X.J., and Yang J.C., 2015, Application of modern biotechnology in flax breeding, Zhongguo Nongxue Tongbao (Chinese Agricultural Science Bulletin), 31(23): 58-63. (冯学金, 杨建春, 2015, 现代生物技术在亚麻育种中的应用, 中国农学通报, 31(23): 58-63.)

[10] Galinousky D.V., Anisimova N.V., Raiski A.P., Leontiev V.N., Titok V.V., and KhotylevaL.V., 2014, Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.), Russ. J. Genet., 50(1): 20-27.

[11] Gao Y.H., Jiang H.Y., Wu B., Niu J.Y., Li Y.J., Guo F., Wang L., and Blakney A.J.C., 2018, The effects of planting density on lodging resistance, related enzyme activities, and grain yield in different genotypes of oilseed flax, Crop Sci., 58(6): 2613-2622.

[12] Geng P., Zhang S., Liu J.Y., Zhao C.H., Wu J., Cao Y.P., Fu C.X., Han X., He H., and Zhao Q., 2020, MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation, Plant Physiol., 182(3): 1272-1283.

[13] Gibaud M., Bourmaud A., and Baley C., 2015, Understanding the lodging stability of green flax stems; the importance of morphology and fibre stiffness, Biosyst. Eng., 137: 9-21.

[14] Girault R., His I., Andeme-Onzighi C., Driouich A., and Morvan C., 2000, Identification and partial characterization of proteins and proteoglycans encrusting the secondary cell walls of flax fibres, Planta, 211(2): 256-264.

[15] Goudenhooft C., Alméras T., Bourmaud A., and Baley C., 2019, The remarkable slenderness of flax plant and pertinent factors affecting its mechanical stability, Biosyst. Eng., 178: 1-8.

[16] Guo F., Niu J.Y., and Gao Z.N., 2016, Effects of variety and density interaction on flax lodging resistance, Gansu Nongye Daxue Xuebao (Journal of Gansu Agricultural University), 51(3): 72-76. (郭芳, 牛俊义, 高珍妮, 2016, 品种密度互作对胡麻抗倒伏特性的影响, 甘肃农业大学学报, 51(3): 72-76.)

[17] Hirano K., Okuno A., Hobo T., Ordonio R., Shinozaki Y., Asano K., Kitano H., and Matsuoka M., 2014, Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance, PLoS ONE, 9(7): e96009.

[18] Hoffmann L., Besseau A., Geoffroy P., Ritzenthaler C., Meyer D., Lapierre C., Pollet B., and Legrand M., 2022, Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis, Plant Cell, 16(6): 1446-1465.

[19] Hu D., 2022, Genetic analysis of culm gravity height and snapping resistance in common buckwheat, Zuowu Zazhi (Crops), (4): 83-89. (胡丹, 2022, 甜荞茎秆重心高度和抗折力的遗传分析, 作物杂志, (4): 83-89.)

[20] Hu Z., 2015, Cell wall traits and enzymatic digestibility relevant gene and QTL in rice culm, Thesis for M.S., Huazhong Agricultural University, Supervisor: Wang L.Q., pp.4-6. (胡振, 2015, 水稻茎秆细胞壁性状和酶解转化效率相关基因和QTL的研究, 硕士学位论文, 华中农业大学, 导师: 王令强, pp.4-6.)

[21] Ignat L., Ignat M.E., Stoica E., Ciobanu C., and Popa V.I., 2011, Lignin blends with polyurethane containing lactate segments. Properties and enzymatic degradation effects, Cell. Chem. Technol., 45(3): 233-243.

[22] Jiang H., Pan G., Chang L., Huang S.Q., Tang H.J., and Li D.F., 2021, Advances in molecular marker assisted breeding of flax, Zhiwu Yichuan Ziyuan Xuebao (Journal of Plant Genetic Resources), 22(4): 910-920. (姜慧, 潘根, 常丽, 黄思齐, 唐慧娟, 李德芳, 2021, 亚麻分子标记辅助育种研究进展, 植物遗传资源学报, 22(4): 910-920.)

[23] Joudi M., and Ende W., 2018, Genotypic variation in pre- and post-anthesis dry matter remobilization in Iranian wheat cultivars: associations with stem characters and grain yield, Czech J. Genet. Plant, DOI:10.17221/93/2017-CJGPB.

[24] Kanapin A., Rozhmina T., Bankin M., Surkova S., Duk M., Osyagina E., and Samsonova M., 2022, Genetic determinants of fiber-associated traits in flax identified by omics data integration, Int. J. Mol. Sci., 23(23): 14536.

[25] Kang Q.H., Guan F.Z., Wang Y.F., Li J.Y., Jiao H.S., Lu Y., Wu G.W., Song X.Y., and Yang X., 2006, Review of current molecular breeding advancement of flax in China, Zhongguo Nongye Kexue (Scientia Agricultura Sinica), 39(12): 2428-2434. (康庆华, 关凤芝, 王玉富, 李建英, 焦洪双, 路颍, 吴广文, 宋宪友, 杨学, 2006, 中国亚麻分子育种研究进展, 中国农业科学, 39(12): 2428-2434.)

[26] Kashiwagi T., Munakata J., and Ishimaru K., 2016, Functional analysis of the lodging resistance QTLBSUC11 on morphological and chemical characteristics in upper culms of rice, Euphytica, 210: 233-243.

[27] Kato S., Samanfar B., Morrison M.J., Bekele W.A., Torkamaneh D., Rajcan I., O’Donoughue L.S., Belzile F.J., and Cober E.R., 2021, Genome-wide association study (GWAS) to identify soybean stem pushing resistance and lodging resistance loci, Can. J. Plant Sci., 101(5): 663-670.

[28] Li F., Zeng Z., Yi L.B., Tang Q.M., and Peng Q.Z., 2019, Genetic dissection of two fibre yield-related stem traits in ramie (Boehmeria nivea L. Gaud), Biotechnol. Biotechnol. Equip., 33(1): 664-670.

[29] Li K., 2017, Genome-wide association study of cell wall components and forage quality in maize stalk, Dissertation for Ph.D., Chinese Academy of Agricultural Sciences, Supervisor: Huang C.L., pp.8-10. (李坤, 2017, 玉米茎秆细胞壁组分及消化品质性状的全基因组关联分析, 博士学位论文, 中国农业科学院, 导师: 黄长玲, pp.8-10.)

[30] Li Y.C., and Qi C.K., 2011, Lignin content and key gene expression in lignin synthesis ofBrassica napus L.with lodging resistance, Jiangsu Nongye Xuebao (Jiangsu Journal of Agricultural Sciences), 27(3): 481-487. (李尧臣, 戚存扣, 2011, 抗倒伏甘蓝型油菜(Brassica napus L.)木质素含量及木质素合成关键基因的表达, 江苏农业学报, 27(3): 481-487.)

[31] Liang G.L., Zhang Y.C., Jia Z.F., Ma X., and Liu W.H., 2019, A study of the relationship between phenotypic traits, stem mechanical traits and lodging resistance of oat varieties for alpine regions, Caoye Xuebao (Acta Prataculturae Sinica), 28(4): 58-69. (梁国玲, 张永超, 贾志锋, 马祥, 刘文辉, 2019, 高寒区不同燕麦品种(系)表型性状和茎秆力学特征与抗倒伏性的关系研究, 草业学报, 28(4): 58-69.)

[32] Lin J.S., Huang X.X., Li Q., Cao Y.P., Bao Y., Meng X.F., Li Y.J., Fu C.X., and Hou B.K., 2016, UDP‐glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification inArabidopsis thaliana, Plant J., 88(1): 26-42.

[33] Liu Y.H., Guo L.Z., Gao Y.H., and Wang Y.P., 2022, Effects of combined application of potassium and silicon fertilizer on carbohydrate and lodging resistance of oil flax stem, Zhongguo Youliao Zuowu Xuebao (Chinese Journal of Oil Crop Sciences), 44(2): 410-423. (刘亚辉, 郭丽琢, 高玉红, 王月萍, 2022, 钾硅肥配施对胡麻茎秆碳水化合物及抗倒性的影响, 中国油料作物学报, 44(2): 410-423.)

[34] Longin C.F.H., and Würschum T., 2014, Genetic variability, heritability and correlation among agronomic and disease resistance traits in a diversity panel and elite breeding material of spelt wheat, Plant Breeding, 133(4): 459-464.

[35] Lu K.L., 2014, Effect of nitrogen fertilization timing on stem growth characteristics and lodging resistance in winter wheat, Thesis for M.S., Shandong Agricultural University, Supervisor: Wang Z.L., pp.8-10. (卢昆丽, 2014, 施氮时期对小麦茎秆发育特性及抗倒伏性能的影响, 硕士学位论文, 山东农业大学, 导师: 王振林, pp.8-10.)

[36] Ma Q.M., Xu Y.Y., Zhao M.A., Song X.Y., and Pei Y.H., 2019, Physiological and biochemical indexes related to lodging resistance of maize stalk and expression analysis of key enzyme genes, Zhiwu Shengli Xuebao (Plant Physiology Journal), 55(8): 1123-1132. (马青美, 许莹莹, 赵美爱, 宋希云, 裴玉贺, 2019, 玉米茎秆抗倒伏相关生理生化指标及关键酶基因的表达分析, 植物生理学报, 55(8): 1123-1132.)

[37] Manga-Robles A., Santiago R., Malvar R.A., Moreno-González V., Fornalé S., López I., Centeno M.L., Acebes J.L., Álvarez J.M., Caparros-Ruiz D., Encina A., and García-Angulo P., 2021, Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance, Plant Sci., 307: 110882.

[38] Meng G.Y., He Z.X., Sun H.L., Zhou Q.M., Bai L.Y., and Zhou J., 2012, Effects of shoot apex regulation on agronomic traits and lodging resistance of flax, Xibei Nongye Xuebao (Acta Agriculturae Boreali-Occidentalis Sinica), 21(1): 88-93. (孟桂元, 贺再新, 孙焕良, 周清明, 柏连阳, 周静, 2012, 顶端调控对亚麻农艺性状及抗倒伏变化的影响, 西北农业学报, 21(1): 88-93.)

[39] Mierziak J., Wojtasik W., Kostyn K., Czuj T., Szopa J., and Kulma A., 2014, Crossbreeding of transgenic flax plants overproducing flavonoids and glucosyltransferase results in progeny with improved antifungal and antioxidative properties, Mol. Breed., 34(4): 1917-1932.

[40] Murray S.C., Sharma A., Rooney W.L., Klein P.E., Mullet J.E., Mitchell S.E., and Kresovich S., 2008, Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates, Crop Sci., 48(6): 2165-2179.

[41] Nan M., Li J., Zhao G.Q., Chai J.K., and Liu Y.M., 2022, Relationship between lodging resistance of oats and the basal internode stem characteristics and lignin synthesis, Caoye Xuebao (Acta Prataculturae Sinica), 31(11): 172-180. (南铭, 李晶, 赵桂琴, 柴继宽, 刘彦明, 2022, 茎秆基部节间特性和木质素合成与燕麦抗倒伏的关系, 草业学报, 31(11): 172-180.)

[42] Pan Z.Y., 2021, Research on the heterosis of lodging resistance characteristics and plant traits in different height maize hybrids, Thesis for M.S., Shihezi University, Supervisors: Gou L., and Wei G.Q., pp.2-4. (潘志远, 2021, 不同株高玉米植株性状和抗倒伏特性及杂种优势研究, 硕士学位论文, 石河子大学, 导师: 勾玲, 魏国庆, pp.2-4.)

[43] Povkhova L.V., Melnikova N.V., Rozhmina T.A., Novakovskiy R.O., Pushkova E.N., Dvorianinova E.M., Zhuchenko A.A., Kamionskaya A.M., Krasnov G.S., and Dmitriev A.A., 2021, Genes associated with the flax plant type (oil or fiber) identified based on genome and transcriptome sequencing data, Plants, 10(12): 2616.

[44] Qian R., Zhou J.H., Yang J., Huang L.Q., and Yuan Y., 2020, Study progress on molecular marker-assisted breeding of Chinese medicinal materials, Zhongguo Zhongyao Zazhi (China Journal of Chinese Materia Medica), 45(20): 4812-4818. (钱润, 周骏辉, 杨健, 黄璐琦, 袁媛, 2020, 中药材分子标记辅助育种技术研究进展, 中国中药杂志, 45(20): 4812-4818.)

[45] Roy J.L., Blervacq A.S., Créach A., Huss B., Hawkins S., and Neutelings G., 2017, Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax, BMC Plant Biol., 17(124): 2-20.

[46] Saroha A., Pal D., Gomashe S.S., Akash, Kaur V., Ujjainwal S., Rajkumar S., Aravind J., Radhamani J., Kumar R., Chand D., Sengupta A., and Wankhede D.P., 2022, Identification of QTNs associated with flowering time, maturity and plant height traits inLinum usitatissimum L. using genome wide association study, Front. Genet., 13: 811924.

[47] Soto-Cerda B.J., Duguid S., Booker H., Rowland G., Diederichsen A., and Cloutier S., 2014, Genomic regions underlying agronomic traits in linseed (Linum usitatissimum L.) as revealed by association mapping, J. Integr. Plant Biol., 56(1): 75-87.

[48] Sowadan O., Li D.L., Zhang Y.Q., Zhu S.S., Hu X.X., Bhanbhro L.B., Edzesi W.M., Dang X.J., and Hong D.L., 2018, Mining of favorable alleles for lodging resistance traits in rice (Oryza sativa) through association mapping, Planta, 248(1): 155-169.

[49] Spokevicius A.V., Southerton S.G., MacMillan C.P., Qiu D.Y., Gan S.M., Tibbits J.F.G., Moran G.F., and Bossinger G., 2007, β‐tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls, Plant J., 51(4): 717-726.

[50] Sun Y.R., Sun S.G., Liu H.T., Guo C.Q., Cao Y.Y., Huang J., Wang J., Zhang Z.Y., Qi S.L., and Liao P.A., 2021, Diversity of lodging resistance traits of different wheat varieties (lines), Mailei Zuowu Xuebao (Journal of Triticeae Crops), 41(10): 1238-1246. (苏亚蕊, 孙少光, 刘浩婷, 郭春强, 曹燕燕, 黄杰, 王君, 张振永, 齐双丽, 廖平安, 2021, 不同小麦品种(系)抗倒伏性状多样性分析, 麦类作物学报, 41(10): 1238-1246.)

[51] Tar'an B., Warkentin T., Somers D.J., Miranda D., Vandenberg A., Blade S., Woods S., Bing D., Xue A., DeKoeyer D., and Penner G., 2003, Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.), Theor. Appl. Genet., 107(8): 1482-1491.

[52] Teingtham K., 2015, QTL mapping of biomass related traits in sweet sorghum, Plant & Animal Genome, http://pag.confex.com/pag/xxiii/webprogram/Paper16505.html.

[53] Tian B.H., Liu Y.L., Zhang L.X., and Li H.J., 2017, Stem lodging parameters of the basal three internodes associated with plant population densities and developmental stages in foxtail millet (Setaria italica) cultivars differing in resistance to lodging, Crop Pasture Sci., 68(4): 349-357.

[54] Tian B.M., Yuan Z.H., and Wang J.P., 2015, Exploration of dynamics analysis and comprehensive evaluation on lodging resistance in stem of rapeseed (B. napus L.), Henan Nongye Kexue (Journal of Henan Agricultural Sciences), 34(3): 30-32. (田保明, 袁志华, 王建平, 2005, 油菜茎秆抗倒伏的力学分析及综合评价探讨, 河南农业科学, 34(3): 30-32.)

[55] Tombuloglu H., 2019, Genome-wide identification and expression analysis of R2R3, 3R- and 4R-MYB transcription factors during lignin biosynthesis in flax (Linum usitatissimum), Genomics, 112(1): 782-795.

[56] Wang J., Zhu J.M., Lin Q.Q., Li X.J., Teng N.J., Li Z.S., Li B., Zhang A.M., and Lin J.X., 2006, Effects of stem structure and cell wall components on bending strength in wheat, Chinese Science Bulletin, 51(7): 815-823.

[57] Wang X.Q., Shi Z., Zhang R.Y., Sun X., Wang J.D., Wang S., Zhang Y., Zhao Y.X., Su A.G., Li C.H., Wang R.H., Zhang Y.X., Wang S.S., Wang Y.D., Song W., and Zhao J.R., 2020, Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize, BMC Plant Biol., 20(1): 515-527.

[58] Wang Y., Sun X.J., and Fang Z.S., 2018, Effects of foliar paclobutrazol application on lodging resistance and grain yield of oil flax, Turang yu Zuowu (Soil and Crop), 7(3): 338-348. (王耀, 孙小娟, 方子森, 2018, 多效唑叶喷施对胡麻抗倒伏能力和籽粒产量的影响, 土壤与作物, 7(3): 338-348.)

[59] Wróbel-Kwiatkowska M., Kropiwnicki M., Żebrowski J., Beopoulos A., Dymińska L., Hanuza J., and Rymowicz W., 2019, Effect of mcl-PHA synthesis in flax on plant mechanical properties and cell wall composition, Transgenic Res., 28(1): 77-90.

[60] Wu R.X., and Yang J.C., 2011, Agronomic character and cluster analysis of flax cultivars, Neimenggu Nongye Keji (Inner Mongolia Agricultural Science and Technology), (4): 52-54, 68. (吴瑞香, 杨建春, 2011, 胡麻主要农艺性状的相关性及其聚类分析, 内蒙古农业科技, (4): 52-54, 68.)

[61] Xiang D.B., Song Y., Wu Q., Ma C.R., Zhao J.L., Yan W., and Zhao G., 2019, Relationship between stem characteristics and lodging resistance of Tartary buckwheat (Fagopyrum tataricum), 22(7): 1-9.

[62] Xie D.W., and Sun J., 2020, Mining and analysis of miRNAs and target genes related to lignin accumulation in flax stalks at different developmental stages, Nanfang Nongye Xuebao (Journal of Southern Agriculture), 51(10): 2321-2330. (谢冬微, 孙健, 2020, 不同发育时期亚麻茎秆中木质素积累相关miRNA及其靶基因的挖掘分析, 南方农业学报, 51(10): 2321-2330.)

[63] Xie D.W., Dai Z.G., Yang Z.M., Sun J., Zhao D.B., Yang X., Zhang L.G., Tang Q., and Su J.G., 2018a, Genome-wide association study identifying candidate genes influencing important agronomic traits of flax (Linum usitatissimum L.) using SLAF-seq, Front. Plant Sci., 8: 2232.

[64] Xie D.W., Dai Z.G., Yang Z.M., Tang Q., Sun J., Yang X., and Su J.G., 2018, Genomic variations and association study of agronomic traits in flax, BMC Genomics, 19(1): 1-12.

[65] Yang D.G., and Lu W.F., 2012, Effect of lodging on agronomic traits and quality in oil flax, Gansu Nongye Keji (Gansu Agricultural Science and Technology), (11): 15-17. (杨东贵, 陆万芳, 2012, 倒伏对胡麻农艺性状及品质的影响, 甘肃农业科技, (11): 15-17.)

[66] Yang X.J., Lu M., Zhang S.H., Zhou F., Qu Y.Y., and Xie C.X., 2008, QTL mapping analysis of plant height and ear height of maize (Zea mays L.), Yichuan (Hereditas), 30(11): 1477-1486. (杨晓军, 路明, 张世煌, 周芳, 曲延英, 谢传晓, 2008, 玉米株高和穗位高的QTL定位, 遗传, 30(11): 1477-1486.)

[67] Yi L.X., 2018, Genome-wide association analysis of yield and quality related traits in flax, Dissertation for Ph.D., Inner Mongolia Agricultural University, Supervisors: Hou J.H., and Zhang H., pp.56-57. (伊六喜, 2018, 胡麻产量和品质相关性状的全基因组关联分析, 博士学位论文, 内蒙古农业大学, 导师: 侯建华, 张辉, pp.56-57.)

[68] Yu H.F., Du X.Y., Yin G.H., Zou S.K., Li N., Zhang Q., Lü Y.J., Wang L.N., Wang Y.M., and Han Y.L., 2022, Genome-wide association mapping for lodging-resistance related traits in common wheat (Triticum aestivum L.), Zhiwu Yichuan Ziyuan Xuebao (Journal of Plant Genetic Resources), 23(1): 147-159. (于海飞, 杜晓宇, 殷贵鸿, 邹少奎, 李楠, 张倩, 吕永军, 王丽娜, 王雅美, 韩玉林, 2022, 普通小麦抗倒伏相关性状的全基因组关联分析, 植物遗传资源学报, 23(1): 147-159.)

[69] Yu R.Q., 2012, Mechanical analysis and comprehensive evaluation of the lodging resistance of wheat stem, Anhui Nongye Kexue (Journal of Anhui Agricultural Sciences), 40(13): 7663-7664. (于润清, 2012, 小麦茎抗倒伏的力学分析及综合评价探讨, 安徽农业科学, 40(13): 7663-7664.)

[70] Yuan H.M., Guo W.D., Zhao L.J., Yu Y., Chen S., Cheng L.L., Kang Q.H., Song X.X., Wu J.Z., Huang W.G., Liu Y., Tao L., and Wu G., 2021, Expression characteristics analysis ofCesA/Csl genes in flax during the fast growing stage, J. Nat. Fibers, 19(6): 1-14.

[71] Zhang J.P., Long Y., Wang L.M., Dang Z., Zhang T.B., Song X.X., Dang Z.H., and Pei X.W., 2018, Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.), BMC Plant Biol., 18(1): 160.

[72] Zhang J.P., Qi Y.N., Wang L.M., Wang L.L., Yan X.C., Dang Z., Li W.J., Zhao W., Pei X.W., Li X.M., Liu M., Tan M.L., Wang L., Long Y., Wang J., Zhang X.W., Dang Z.H., Zheng H.K., and Liu T.M., 2020, Genomic comparison and population diversity analysis provide insights into the domestication and improvement of flax, iScience, 23(4): 100967.

[73] Zhang S.J., Song X.Q., Yu B.S., Zhang B.C., Sun C.Q., Knox J.P., and Zhou Y.H., 2012, Identification of quantitative trait loci affecting hemicellulose characteristics based on cell wall composition in a wild and cultivated rice species, Mol. Plant, 5(1): 162-175.

[74] Zhang Z.H., 2022, Study on the relationship between stalk characteristics and lodging resistance among different soybean varieties, Thesis for M.S., Guizhou University, Supervisor: He J., pp.1. (张中华, 2022, 不同大豆品种间茎秆特性与抗倒伏性关系研究, 硕士学位论文, 贵州大学, 导师: 何进, pp.1.)

[75] Zhao X.H., Bai Y.X., Yao Y.H., An L.K., and Wu K.L., 2021, Research progress on the relationship between stem characteristics and crop stem lodging, Zhiwu Shengli Xuebao (Plant Physiology Journal), 57(2): 257-264. (赵小红, 白羿雄, 姚有华, 安立昆, 吴昆仑, 2021, 禾谷类作物茎秆特性与茎倒伏关系的研究, 植物生理学报, 57(2): 257-264.)

[76] Zhao Z.C., Duan S., Hao J.M., Cui C.G., Yang Y., Condon A.G., Chen F., Hu Y.G., and Chen L., 2021, The dwarf geneRht15 improved lodging resistance but differentially affected agronomic and quality traits in durum wheat, Field Crops Res., 263(12): 108058.

[77] Zhou F.Y., He S.Y., Wang M.L., Tang C.C., Xu Y., Fan F., and Xie G.H., 2021, Correlation and combining ability of main chemical components in sorghum stems and leaves using cytoplasmic male sterile lines for improving biomass feedstocks, Ind. Crops Prod., 167: 113552.

[78] Zhu X.K., Wang X.J., Guo K.Q., Guo W.S., Feng C.N., and Peng Y.X., 2006, Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality, Mailei Zuowu Xuebao (Journal of Triticeae Crops), 26(1): 87-92. (朱新开, 王祥菊, 郭凯泉, 郭文善, 封超年, 彭永欣, 2006, 小麦倒伏的茎秆特征及对产量与品质的影响, 麦类作物学报, 26(1): 87-92.)

[79] Zuk M., Dziato M.. Richter D. Dymiiska L. Matuta J. Kotecki A.. Hanuza J.. and Szopa J. 2016, Chalcone synthase (CHS) gene suppression in flax leads to changes in wall synthesis and sensing genes, celI wall chemistry and stem morphology parameters, Front. Plant Sci, 7: 894.

本文标签:
诚信认证 电子商务诚信单位认证

Copyright 1998- 易择期刊网 All Rights Reserved

本站不是任何杂志官网,不涉及出版事务,数据来源网络,如有侵权,请联系我们删除,谢谢